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Abstract—This paper proposes a framework combining genetic
programming (GP) with other symbolic regression (SR) methods,
called the symbolic regressor enhancer (SRE). The basic idea is
to use the syntax tree of the expression obtained from other SR
methods to improve both the efficiency and the quality of the
evolutionary procedure. Specifically, this paper investigates on
the different ways of hybridization, elitist selection, and ranging
crossover to assemble the proposed SRE. The effectiveness of SRE
is demonstrated with the Taylor polynomial, the fast function
extraction, and the GP-based SR methods, including Operon, the
GP variant of gene-pool optimal mixing evolutionary algorithm,
the epsilon-lexicase selection, and gplearn. Out of 28 benchmarks
from the SR benchmark and the Feynman SR database, the
statistical test indicates that SRE applied to each selected SR
method significantly outperforms the respective SR method in at
least 8 and at most 21 benchmarks.

Index Terms—Symbolic regression, genetic programming

I. INTRODUCTION

Symbolic regression (SR) aims to discover optimal mathe-
matical expressions that capture relationships within the data
in syntax format [1], [2]. Genetic programming (GP) [3] is
a commonly-used technique for finding SR models [4]–[7].
GP leverages evolutionary mechanisms, such as crossover and
mutation, to iteratively generate individuals to find a model
that fits the dataset.

In recent years, a promising research area has focused on
integrating GP with traditional SR methods [8]–[11]. Among
these methods, the Taylor GP (TaylorGP) [9] utilizes the
Taylor polynomial (TP), while the GP based evolvement
of models of models (EMM-GP) [11] incorporates the fast
function extraction (FFX) [12] within GP. TaylorGP calculates
TPs through finite differences and employs the low-order
segments of TP and the features extracted from TP to guide
the evolutionary process. EMM-GP utilizes FFX to generate
model sets and employs these models as the essential building
blocks added into the function set of GP.

Building on insights from the related literature, we ex-
plore the potential for improvement by leveraging the entire
syntax structure of the returned model through the subse-
quent evolutionary procedure. This paper proposes a new
framework combining GP with other SR methods, called the
symbolic regressor enhancer (SRE)1. The proposed framework

1The source code is available at https://github.com/tuchin32/teil-sre.git.

hybridizes the expression derived from other SR methods
with random programs during the population initialization
of tree-based GP. This hybridization initiates the evolution
with the knowledge learned from other SR methods and aims
to improve the efficiency and the quality of the evolution-
ary procedure. Furthermore, to strengthen the capability of
searching for the superior offspring during the evolutionary
procedure, we incorporate the elitist selection and the ranging
crossover [6] into the SRE framework. The elitist selection
preserves the best individuals from the previous generation,
while the ranging crossover replaces a tree node with a subtree
matching the desired output range.

The effectiveness of SRE is assessed through its appli-
cation to both traditional and GP-based SR methods. The
traditional methods used in our experiments contain TP and
FFX. The GP-based methods include Operon [7], the GP
variant of gene-pool optimal mixing evolutionary algorithm
(GP-GOMEA) [4], the epsilon-lexicase selection (EPLEX) [5],
and gplearn [13], which are widely used in contemporary SR
research [2], [14], [15].

The rest of this paper is organized as follows. Section II
introduces the proposed SRE framework. Section III explores
the variants of the components in SRE. Section IV details
the setup of the experiments, the results, and the discussions.
Finally, Section V concludes the paper.

II. METHODOLOGY

The SRE framework, as shown in Fig. 1, consists of two
phases: the population generation and the evolutionary pro-
cedure. In the population generation phase, an SR method is
selected to be combined with GP to form an initial population.
Each program in the population is generated by combining the
expression E from the SR method and a random program
Gi from GP through the hybridization function H(E,Gi).
This hybridization produces a tree-structured program with E
and Gi as the left and right subtrees of H , respectively. An
overview of the hybridization and an example are illustrated
in Fig. 2, where H is multiplication (H×), E is 2x + 3, Gi

is sin(x), and x represents the variable. The resulting hybrid
program is H×(E,Gi) = (2x+3)× sin(x). The introduction
of E aims to capture the underlying syntax format of the data,
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Fig. 1. The SRE framework flowchart includes two phases: the population
generation and the evolutionary procedure.

and SRE utilizes the learned syntax format in anticipation of
the enhanced performance.

In the evolutionary procedure phase, to leverage the learned
structure of E from other SR methods, we simply forbid the
node or nodes representing H from changing during each
recombination. Furthermore, several evolutionary mechanisms
are utilized to enhance superior offspring production during
selection and recombination. By employing the appropriate
mechanisms, we strengthen the capability of the SRE frame-
work. The choices of alternative hybridization functions in the
first phase and evolutionary mechanisms in the second phase
are investigated in the following section.

III. SRE ALGORITHM

Based on the aforementioned framework, we determine
appropriate hybridization functions and evolutionary mecha-
nisms to define the SRE algorithm. We initially conduct pre-
experiments to test TP as the SR method with a relatively
small number of function evaluations (NFE). The application
of SRE to other SR methods is extended in the subsequent
section to demonstrate the effectiveness of our choices. In
our pre-experiments, we first describe the benchmark problems
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Fig. 2. Overview of the hybridization framework. The expression E, sourced
from other SR methods, is integrated with random programs G through the
hybridization function H to form a population composed of hybrid programs.

and the setup of this study. Then, we provide the results and
discussions on the chosen candidates.

In this study, 28 commonly-used benchmark problems with
the known ground truth models [2], [9], [16], [17] from the
SR benchmark [18] and the Feynman SR database [19] are
considered. The benchmark problems are detailed in Table I.
Additionally, the parameter settings for the variants of SRE
are provided in Table II. Different sets of population size and
maximum generation are employed in the following studies
and specified in the respective description. As for the function
set, ÷∗ is the protected division defined by

÷∗(x, y) =

{
x
y if |y| ≥ 0.001

1 otherwise,

and exp∗ is the protected exponential function defined by

exp∗(x) =

{
ex if x ≤ 10

e10 otherwise.

The fitness of each program is evaluated using the mean
squared error (MSE). For each benchmark, the dataset is
randomly split into 70% for training and 30% for testing.



TABLE I
THE PROBLEMS FROM THE SR BENCHMARK AND THE FEYNMANN SR DATABASE.

WE CATEGORIZE THE BENCHMARKS INTO TWO GROUPS: POLYNOMIAL-EXPRESSIBLE AND POLYNOMIAL-INEXPRESSIBLE.
THE NOTATION t: [a, b] REPRESENTS THE BOUNDARY OF THE UNIFORM DISTRIBUTION OF THE VARIABLE t, WHERE a AND b DEFINE THE RANGE OF t.

Category Problem Name Expression Dataset Samples

f1 Nguyen-4 x6 + x5 + x4 + x3 + x2 + x x: [-1, 1] 20
f2 Nguyen-3 x5 + x4 + x3 + x2 + x x: [-1, 1] 20
f3 Nguyen-2 x4 + x3 + x2 + x x: [-1, 1] 20

Polynomial f4 Nguyen-1 x3 + x2 + x x: [-1, 1] 20
expressible f5 Koza-3 x6 − 2x4 + x2 x: [-1, 1] 20

f6 Koza-2 x5 − 2x3 + x x: [-1, 1] 20
f7 Nguyen-12 x4 − x3 + y2/2− y x: [-1, 1] 400
f8 Keijzer-15 x3/5 + y3/2− y − x x: [-1, 1] 400

f9 Korns-11 6.87 + 11 cos(7.23x3) x: [-1.3, 1.3] 40
f10 Nguyen-5 sin(x2) cos(x)− 1 x: [-1.6, 1.6] 40
f11 Nguyen-6 sin(x) + sin(x+ x2) x: [-1, 1] 20
f12 Keijzer-11 xy + sin((x− 1)(y − 1)) x, y: [-1, 1] 400
f13 Keijzer-13 6 sin(x) cos(y) x, y: [-1, 1] 400
f14 Nguyen-9 sin(x) + sin(y2) x, y: [-1, 1] 400
f15 Nguyen-10 2 sin(x) cos(y) x, y: [-1, 1] 400

f16 Vladislavleva-1 exp(−(x−1)2)

1.2+(y−2.5)2
x, y: [-1, 1] 400

f17 Korns-2 0.23 + 14.2(v + y)/(3w) v, y: [-1, 1], w: [1, 3] 1000
Polynomial f18 Vladislavleva-5 30((x− 1)(z − 1))/(y2(x− 10)) x, z: [0, 4], y: [1, 3] 1000

inexpressible f19 Keijzer-7 ln(x) x: [0, 4] 20
f20 Nguyen-8

√
x x: [0, 4] 20

f21 Nguyen-11 xy x, y: [1, 5] 400
f22 Keijzer-5 30xz/((x− 10)y2) x, z: [-2, 2], y: [1, 3] 1000

f23 Feynman-I.6.2 f =
exp(−(θ/σ)2/2)√

2πσ
θ, σ: [1, 3] 100000

f24 Feynman-I.26.2 θ1 = arcsin(n× sin(θ2)) n: [0, 1], θ2: [1, 5] 100000
f25 Feynman-I.34.14 ω =

(1+v/c)√
1−v2/c2

ω0 c: [3, 10], v: [1, 2], ω0: [1, 5] 100000

f26 Feynman-I.37.4 Int = I1 + I2 + 2
√
I1I2cos(δ) I1, I2, δ: [1, 5] 100000

f27 Feynman-I.47.23 c =
√

γ × pr/ρ γ, pr, ρ: [1, 5] 100000

f28 Feynman-II.24.17 k =
√

ω2

c2
− π2

d2
ω: [4, 6], c: [1, 2], d: [2, 4] 100000

TABLE II
THE PARAMETER SETTINGS FOR GP APPROACHES.

Parameter Value

Runs per benchmark 30
Population size 200, 400, 500
Maximum generation 20, 40, 50
Function set +,−,×,÷∗, sin, cos, exp∗

Terminal set variable, constant
Fitness function MSE

To find an appropriate hybridization function and evolution-
ary mechanisms, we sequentially investigate each component.
First, three hybridization functions are employed with stan-
dard evolutionary mechanisms. Then, utilizing the selected
hybridization function, we investigate techniques aiming at
facilitating progressive improvement in fitness and consider
the semantics of subtrees for the recombination procedure.

A. The Choice for The Hybridization Function

The hybridization function H determines how to combine
the expression E and the random program Gi. Here we inves-
tigate the effects of using addition (H+), multiplication (H×),
and the transformation (HT ) as the hybridization functions.
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Fig. 3. Tree structures depict the expression E, a random program Gi, and
the three hybridization functions: H+, H×, and HT . Dotted line enclosed
areas correspond to the structure of the hybridization functions.

The tree structures of the three hybridization functions are
illustrated in Fig. 3, and HT is defined by

HT (E,Gi) = E × (1 +Gi).

Note that the potential candidates for H extend beyond the
three hybridization functions we choose.

The investigation results of two metrics, the coefficient
of determination (R2) and the interquartile range (IQR), are
presented in Fig. 4 and Table III. The results show that H×
has an advantage over H+ and HT . The population size is
200 and the maximum generation is 20 in this study.



H+ H× HT
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
M

ea
n 

of
 2

8 
R

2  m
ed

ia
ns

Training

H+ H× HT

Testing

Hybridization function

Fig. 4. Results on the three hybridization functions. Points indicate the mean
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TABLE III
MEANS OF THE 28 RANKINGS IN TERMS OF IQR ACROSS ALL

BENCHMARKS OF THE THREE HYBRIDIZATION FUNCTIONS ON THE
TESTING DATASET. A HIGHER RANKING MATCHES A SMALLER IQR.

H+ H× HT

Means of the rankings 2.00 1.86 2.14

First, the means of 28 R2 medians across all benchmarks
are depicted in Fig. 4 for both training and testing stages,
with each R2 median computed from 30 independent runs.
The mean of R2 medians of H× is 1.05 times greater than
that of H+ and 1.02 times greater than that of HT . These
results indicate that H× demonstrates relative generalizability
across the benchmarks. Furthermore, given that H× exhibits
superior distribution in terms of R2 medians, we assess the
consistency by computing rankings based on the IQR of 30 R2

scores from each independent run on the testing dataset per
benchmark. A smaller IQR corresponds to a higher ranking
and generally indicates more consistent performance. The
results, as shown in Table III, indicate that H× achieves
the highest mean rankings among the three hybridization
functions. Since H× demonstrates relative generalizability and
more consistent performance, we select multiplication (H×) as
the hybridization function for our proposed method.

B. The Choices for The Evolutionary Mechanisms

First, to aim for progressive improvement in fitness and
retain elitist individuals, we investigate the applicability of the
two elitism mechanisms, the optimal mixing (OM) [20] and
the (µ+ λ)-selection [21]. A key component of OM involves
the use of additional function evaluations to assess whether the
temporal individuals improve. The (µ + λ)-selection chooses
µ individuals from the combined population consisting of µ
parent individuals and λ offspring individuals. In this study, the
baseline is the tournament selection (TS) [22], a commonly-
used selection scheme in GP [23], and OM is incorporated

TABLE IV
MEANS OF THE 28 RANKINGS IN TERMS OF MSE MEDIAN OVER 30

INDEPENDENT RUNS ON ALL BENCHMARKS ON THE TESTING DATASET.
A HIGHER RANKING MATCHES A LOWER MSE MEDIAN.

TS OM with TS (µ+ λ)-selection

Means of the rankings 2.04 2.64 1.25
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Fig. 5. Means of the tree distances between the best program and the others
in the population at generations 1, 20, and 40. The disparity in tree distance
between generations 1 and 40 is more pronounced through OM with TS than
through the (µ+ λ)-selection across most benchmarks.

with TS. The population size is set to 400 and the maximum
generation is set to 40.

The results, as shown in Table IV, indicate that utilizing
the (µ+λ)-selection leads to improvement over the other two
schemes. An observation is that the mean ranking of OM with
TS is even lower than that of TS alone. To understand this,
we evaluate the impact on population diversity in the training
stage by comparing the average tree distance with respect to
OM with TS and the (µ + λ)-selection. Specifically, the tree
distance is defined in [24], and the average tree distance is
calculated from the distances between the best program and
the others in the population. The trends illustrated in Fig. 5
reveal that the aggregated tree distance of the (µ+λ)-selection
is greater than that of OM with TS on most benchmarks,
indicating that population diversity decreases drastically when
using OM with TS. Therefore, we utilize the relatively higher
population diversity contributed by the (µ + λ)-selection to



Algorithm 1: SRE
item : P : population, O: offspring population,

E: expression, G: random programs,
H×: hybridization function

input : S: SR method, D: dataset
output: best program

1 E ← execute S given D
2 P ← ∅
3 for i = 1 to the population size do
4 Gi ← generate a random program using GP
5 Pi ← H×(E,Gi)
6 P ← P ∪ Pi

7 while yet to reach the maximum generation do
8 O ← ∅
9 for Pi ∈ P do

10 Oi ← execute ranging crossover given Pi and
P with probability α, mutation given Pi with
probability β, or reproduction given Pi with
probability 1− α− β

11 Evaluate the fitness of Oi with D
12 O ← O ∪Oi

13 P ← execute (µ+ λ)-selection given P and O

14 return the best program in P in terms of fitness

mitigate the risk of converging to local optima and facilitate
the improvement in fitness.

Furthermore, to identify segments for offspring using se-
mantics of subtrees during recombination, we compare the
ranging crossover [6] to the standard crossover utilizing H×
and the (µ + λ)-selection. The ranging crossover utilizes the
output ranges of subtrees from a pool to identify which subtree
is beneficial for the replaced tree node. The population size
and the maximum generation are 400 and 40, respectively. The
experiment results show that the median of the MSEs over
30 independent runs with the ranging crossover is less than
that with the standard crossover in 57.14% of the benchmarks
on the testing dataset. Additionally, The results of the two-
sided Mann-Whitney U test [25] indicate that significant
improvements occur in 21.42% of the benchmarks, with the
significance level of 0.05. Therefore, we adopt the ranging
crossover to improve the quality of offspring production.

According to the empirical results, we propose the de-
termined SRE algorithm. The pseudo-code is presented in
Algorithm 1. Note that in the evolutionary procedure (lines
7 to 13), we introduce two probability parameters α and β to
determine the recombination event for each program.

IV. EXPERIMENT RESULTS

This section first describes the benchmark problems and the
setup of the experiments. Then, the experiment results and the
associated discussions are presented.
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Fig. 6. Constraints on the relationship between expressions E from the SRE-
based method and E′ representing the respective SR method. Symbols dE
and dE′ denote the maximum tree depth of E and E′, respectively.

A. Test Problems and Experiment Setup

In the following experiments, we use the same 28 bench-
marks [18], [19] as introduced in Section III. Additionally, we
categorize these benchmark problems into two groups based
on function characteristics: polynomial-expressible (f1 to f8),
purely consisting of finite-order functions, and polynomial-
inexpressible (f9 to f28). As for the parameter settings, we
increase the population size and the maximum generation
while keeping the other settings consistent with those outlined
in Table II. Specifically, we set the population size to 500 and
the maximum generation to 50.

In this paper, we apply SRE to both traditional and GP-
based SR methods to assess whether the proposed algorithm
enhances the performance of the respective SR methods in
terms of MSE. The traditional methods contain TP and
FFX, while the GP-based methods include Operon [7], GP-
GOMEA [4], EPLEX [5], and gplearn [13]. TP is selected
for its independence from function evaluation when both the
polynomial degree and the point are provided, while FFX is
chosen for its low cost in function evaluation [12]. The selected
GP-based SR methods are commonly-used in SR research, and
Operon represents a state-of-the-art GP approach for SR [2],
[14], [15]. To denote the developed hybrid approaches, we
prefix each selected SR method with “SRE-”.

For a fair comparison, two constraints are imposed on the
hybrid program generated by each SRE-based method during
population generation and the expression E′ representing the
respective SR method, as visualized in Fig. 6. The first
constraint requires that the maximum tree depth of E (dE)
is less than that of E′ (dE′ ). The second constraint requires
that the MSE of E is not less than that of E′. To implement
these constraints,

• For TP: Several TPs with polynomial degrees ranging
from 1 to 6 are computed by approximating at the data
point closest to the midpoint of the input boundaries.
We select the best expression (E′) from the 6 computed
polynomials in terms of MSE for TP. Then, among
the polynomials with a degree lower than that of E′,
we select the best expression (E) that adheres to the
constraints for SRE-TP.

• For FFX: The algorithm returns several expressions with
a trade-off between the number of basis functions and
errors [12]. We select the best expression (E′) in terms
of MSE for FFX; then, among the remaining expressions



TABLE V
THE MSE MEDIANS OVER 30 INDEPENDENT RUNS AND THE TWO-SIDED MANN-WHITNEY U TEST RESULTS ON THE TESTING DATASET.

THE SYMBOLS +, ≈, AND − INDICATE WHETHER EACH SRE-BASED APPROACH IS SIGNIFICANTLY BETTER, INDIFFERENT, OR SIGNIFICANTLY WORSE
THAN THE RESPECTIVE SR METHOD IN TERMS OF MSE. THE LAST ROW SUMMARIZES THE STATISTICAL TEST RESULTS ACROSS 28 BENCHMARKS.

S TP FFX Operon GP-GOMEA EPLEX gplearn

SRE-S S SRE-S S SRE-S S SRE-S S SRE-S S SRE-S S
f1 1.20e-04 0.00e+00∗ 6.07e-03 6.37e-03 4.58e-03 4.21e-03 1.21e-03 9.64e-04 3.86e-03 4.94e-04∗ 7.89e-03 1.31e-02
f2 4.39e-06 0.00e+00∗ 1.70e-03∗ 4.24e-03 2.03e-03∗ 3.16e-03 3.30e-04 7.82e-04∗ 0.00e+00 0.00e+00 2.34e-03 3.56e-03
f3 3.35e-08 0.00e+00∗ 1.81e-03 3.13e-03 1.94e-03 1.78e-03 7.27e-05 8.59e-05 0.00e+00 0.00e+00 2.39e-03 6.50e-03
f4 0.00e+00 0.00e+00 1.67e-03 1.93e-03 1.36e-03∗ 2.70e-03 1.03e-32 1.03e-32 0.00e+00 0.00e+00∗ 2.56e-04∗ 1.64e-03
f5 9.84e-04 0.00e+00∗ 1.07e-03∗ 1.89e-02 1.57e-05 1.21e-05 1.04e-05 1.45e-05 4.49e-04 1.18e-04 3.59e-03 3.73e-03
f6 3.30e-06 0.00e+00∗ 1.24e-02∗ 1.88e-02 2.88e-05 3.74e-05 2.59e-06 1.60e-06 1.86e-05 3.16e-05 1.99e-04∗ 5.09e-03
f7 0.00e+00 0.00e+00 4.65e-03∗ 2.54e-02 3.37e-02 4.42e-02 6.77e-02∗ 2.81e-01 3.84e-02 3.68e-02 4.19e-02 5.89e-02
f8 3.02e-03 0.00e+00∗ 1.76e-04∗ 6.02e-03 1.71e-03∗ 4.10e-03 3.37e-04∗ 2.83e-03 2.93e-03 1.74e-03 4.30e-03∗ 8.84e-03
f9 1.86e+01∗ 9.30e+01 1.93e+01∗ 2.07e+01 1.53e+01∗ 2.12e+01 1.51e+01∗ 4.68e+01 1.93e+01 2.27e+01 2.10e+01 1.85e+01
f10 2.71e-04∗ 5.59e-02 1.07e-02∗ 2.88e-02 2.22e-04 1.84e-04 9.06e-04 6.92e-04∗ 2.17e-03 1.98e-03∗ 1.03e-02∗ 2.55e-02
f11 6.24e-05∗ 1.32e-03 5.77e-04 6.91e-04 2.32e-04 9.35e-05∗ 0.00e+00 0.00e+00 5.46e-04 3.47e-04∗ 8.28e-04 1.26e-03
f12 5.53e-03∗ 2.56e-02 2.12e-02∗ 7.87e-02 3.12e-02 6.32e-02 3.70e-02 1.70e-01 2.05e-02 2.64e-02 2.73e-02∗ 5.45e-02
f13 4.78e-05∗ 2.16e-02 5.18e-05∗ 4.78e-03 3.82e-04 3.01e-04 8.04e-04 4.32e-05∗ 8.64e-03 7.50e-03∗ 3.99e-03 9.80e-02
f14 8.08e-04∗ 2.74e-03 2.87e-03∗ 7.64e-02 7.53e-05 5.68e-05 0.00e+00 0.00e+00∗ 7.17e-04 1.86e-04 5.00e-03∗ 7.37e-02
f15 0.00e+00∗ 2.74e-03 2.13e-05∗ 3.67e-04 2.57e-05 1.93e-05 0.00e+00 0.00e+00 3.05e-04 7.62e-04 2.12e-04∗ 2.16e-02
f16 5.77e-02 5.69e-02 8.52e-02∗ 6.62e-01 1.72e-02 1.22e-02 1.44e-02 4.35e-02 5.31e-02 2.72e-02 4.62e-02 6.11e-02
f17 1.66e-04 3.65e-05∗ 2.48e-03∗ 1.08e-02 2.88e-07 1.45e-08 2.55e-02∗ 7.63e-02 5.79e-03 1.21e-02 3.85e-03∗ 1.72e-02
f18 1.10e-03∗ 4.36e-03 9.24e-03∗ 1.59e-02 1.59e-02∗ 2.42e-02 1.27e-02 3.79e-02 7.09e-03 1.69e-02 2.33e-02∗ 6.17e-02
f19 7.01e-02 1.71e-01 3.83e-02 2.69e-02 2.60e-02 2.19e-02 1.74e-01 2.00e-01 1.14e-01 1.99e-01 1.32e-01 1.24e-01∗
f20 4.67e-06∗ 4.78e-04 1.69e-04 1.27e-04∗ 2.61e-05 2.25e-05 2.63e-04 8.30e-05 2.11e-03 2.11e-03 2.07e-03∗ 9.10e-03
f21 1.05e+03∗ 1.15e+04 2.57e+03∗ 2.21e+04 1.24e+02 1.35e+02 1.38e+03∗ 7.71e+03 8.62e+02 1.35e+03 5.33e+02 7.61e+02
f22 6.27e-02∗ 2.98e-01 9.98e-01∗ 2.42e+00 2.99e-02∗ 5.55e-02 2.01e-01∗ 1.29e+00 8.75e-02∗ 9.13e-02 7.70e-02∗ 2.75e-01
f23 2.51e-05∗ 4.31e-05 3.51e-04∗ 4.39e-04 5.87e-05∗ 8.90e-05 6.91e-05∗ 5.42e-04 1.40e-04∗ 2.21e-04 2.65e-04∗ 7.28e-04
f24 1.46e-03∗ 7.76e-02 1.13e-03∗ 7.85e-02 4.43e-03 1.76e-03 7.21e-04∗ 1.45e-03 7.90e-04∗ 1.29e-03 7.84e-04∗ 5.00e-03
f25 8.54e-03∗ 1.78e-02 2.82e-02∗ 5.35e-02 3.81e-02 3.47e-02 9.02e-04 1.81e-03 3.54e-02∗ 8.96e-02 4.31e-02 2.44e-02
f26 4.05e-01∗ 1.78e+00 3.12e-01∗ 6.68e-01 5.26e-01 5.90e-01 4.97e-01∗ 2.36e+00 4.34e-01 7.61e-01 4.54e-01 3.49e-01
f27 5.25e-03 3.71e-03 1.48e-02∗ 1.54e-02 9.34e-03 1.09e-02 4.58e-02∗ 3.79e-01 4.62e-02∗ 7.62e-02 3.89e-02 3.75e-02
f28 1.25e-03 2.07e-04∗ 2.02e-03∗ 2.09e-03 1.15e-03 1.01e-03 6.41e-04 5.57e-04 7.90e-03 1.31e-02 3.76e-03∗ 4.52e-02

All 15+ / 4≈ / 9− 21+ / 6≈ / 1− 8+ / 19≈ / 1− 15+ / 4≈ / 9− 21+ / 6≈ / 1− 8+ / 19≈ / 1−

that adhere to the constraints, we select the best expres-
sion (E) for SRE-FFX.

• For GP-based methods: To maintain the same NFE be-
tween the SRE-based method and the corresponding GP,
we use half of the NFE to generate E and the other half
to execute the evolutionary procedure of the SRE-based
method. In contrast, E′ is generated with the full NFE.
Note that the NFE in this paper is defined as the product
of the population size and the maximum generation.

The aforementioned settings aim for a fair comparison in
experiments of this paper. However, several details, such as
the maximum degree of the polynomial and the partition of
the NFE in the case of the GP-based methods, may require
further investigation or customization for specific problems.

To evaluate the effectiveness of SRE, we first compare SRE-
based methods with their respective selected SR methods. Re-
garding tree depth, we impose a restriction that the maximum
tree depth for each SRE-based method during the evolutionary
process does not exceed that of the corresponding SR method.
Furthermore, we establish an overall ranking comparison to
assess the improvement of each SRE-based method. In this
comparison, each SR method is assigned the same maximum
depth for each benchmark.

B. Results and Analyses

1) Comparisons to the respective SR methods: The medians
of the MSEs and the results from the two-sided Mann-Whitney
U test [25] at the significance level of 0.05 on the testing

dataset are shown in Table V. Medians less than 10−18 are
represented as zeros. The smaller medians in each comparison
are displayed in bold and additionally marked with a “∗” if
the p-value of the corresponding statistical result is below the
significance level of 0.05.

Overall, the number of benchmarks where each SRE-
based method significantly outperforms the respective SR
method exceeds the number where each SRE-based method
significantly performs worse. 5 out of 6 SRE-based methods
perform significantly worse in only 0 to 2 benchmarks, with
the exception that SRE-TP performs significantly worse in 9
benchmarks. This difference is because that TP utilizes correct
polynomial degrees for the ground truths in the polynomial-
expressible category (f1 to f8). However, SRE-TP surpasses
TP in 15 benchmarks in the polynomial-inexpressible category.

Furthermore, in the case of GP-based SR methods, the
numbers where each SRE-based method performs indifferently
to the respective SR method either closely match or exceed the
numbers of outperformance. This observation is likely due to
the exploration ability of GP, and thus SRE provides limited
improvement on the selected GP-based SR methods.

2) Overall ranking comparisons: For each benchmark, the
ranking performance of each method is determined by the
median of MSEs on the testing dataset over 30 independent
runs. The means of the rankings (MR) of each method are
depicted in Fig. 7.

In the ranking results of the polynomial-expressible category
(Fig. 7a), SRE-TP takes advantage of TP even with polynomial
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(a) Polynomial expressible benchmarks.
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(b) Polynomial inexpressible benchmarks.

Fig. 7. MR across 28 benchmarks on the testing dataset. Ranking values are determined by the medians of MSEs from 30 independent runs over 12 methods.
The bars represent means, and the whiskers depict standard errors, both in terms of the rank values.

degrees lower than those of the ground truths and secures the
second position in terms of MR. Additionally, GP-GOMEA,
SRE-GP-GOMEA, EPLEX, and SRE-EPLEX occasionally
find solutions that align with the ground-truths and therefore
achieve the top positions in terms of MR. This is possibly due
to the relatively lower problem difficulty of the benchmarks in
the polynomial-expressible category [18], which might favor
GP-GOMEA’s focus on handling linkage [4] and the EPLEX’s
individual identification [5].

In the ranking results of the polynomial-inexpressible cat-
egory (Fig. 7b), all SRE-based methods outperform their
respective SR methods in terms of MR. Among the top
four methods based on MR, SRE-Operon ranks the highest,
followed by Operon, SRE-GP-GOMEA, and SRE-TP. Despite
overlapping standard errors among the top four methods, three
of the four methods are still SRE-based methods.

C. Discussions

SRE utilizes the expression obtained from other SR methods
and leverages the hybridization function and the evolutionary

mechanisms we investigate to achieve the improvement on
performance. The effectiveness of SRE is shown by the com-
parisons in the previous subsection. However, one argument
is regarding the necessity of applying SRE to GP-based
methods, given the shared essence of GP between SRE and
the selected GP-based SR methods. To assess this necessity,
we use randomly generated programs as expressions E by
modifying line 1 in Algorithm 1, and we compare the rankings
of SRE with the selected GP-based SR methods and the
SRE-based methods, respectively. The results of MR on the
testing dataset in the polynomial-inexpressible category are
illustrated in Fig. 8. In Fig. 8a, SRE ranks third in terms of
MR, while in Fig. 8b, SRE falls behind all the SRE-based
methods. This suggests that under the constraints of limited
NFE and program size, SRE utilizes expressions from other
GP-based SR methods and further enhances performance. We
hypothesize that SRE conducts a fine-tuning process on the
expressions from other GP-based SR methods, although this
hypothesis requires further investigation in future works.
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(a) SRE compared to the selected SR methods.
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(b) SRE compared to the SRE-based methods.

Fig. 8. MR across 20 benchmarks in the polynomial-inexpressible category
on the testing dataset. SRE is compared with the selected SR methods and
the SRE-based methods, respectively.

V. CONCLUSION

In this study, we proposed SRE, a framework that com-
bines GP with other SR methods. The syntax format of the
expression from the other SR method can be considered as the
learned knowledge of the given data, which aimed to improve
the efficiency and the quality of the evolutionary procedure.
Our pre-experiments revealed that employing the multiplica-
tion as the hybridization function, the (µ+λ)-selection, and the
ranging crossover strengthened the capabilities of SRE. The
experiment results with the six selected SR methods indicated
that each SRE-based method significantly outperformed its
respective SR method in the median MSEs across at least 8
and up to 21 out of 28 benchmarks. Furthermore, SRE-Operon
ranked first in terms of MR on the polynomial-inexpressible
benchmarks when compared to the other SRE-based methods
and the selected SR methods.

As for future work, we would like to test other hybridiza-
tion functions and analyze the scenarios in which specific
hybridization approaches are most effective. Additionally, we
would like to explore various combinations of evolutionary
mechanisms to further enhance the SRE framework.
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